欧拉工程-问题12
原题链接 http://projecteuler.net/problem=12
Highly divisible triangular number
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
三角数序列是由自然数相加形成的。第七个三角数是 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28.前十个三角数是:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …
我们列举出前7个三角形数的因子:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,10
21: 1,3,7,21
28: 1,2,4,7,14,28
我们可以看到28是第一个有超过5个因子的三角数
求第一个超过500个因子的三角数
解答:
这题的题意其实就是求素数因子,将三角数表示成素数因子乘积的形式,如 (28 = 2^2 * 7),这里素数因子2的次数的取值为0,1,2三种可能,素数因子7的次数的取值为0,1两种可能,所以28的因子有6个。按照这个思路,去做就可以了。