文章目錄

原题链接 http://projecteuler.net/problem=25

1000-digit Fibonacci number

The Fibonacci sequence is defined by the recurrence relation:

F(n) = F(n-1)+ F(n-2), where F1 = 1 and F2 = 1.

Hence the first 12 terms will be:

F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34
F10 = 55
F11 = 89
F12 = 144

The 12th term, F12, is the first term to contain three digits.

What is the first term in the Fibonacci sequence to contain 1000 digits?

1000个数字的斐波纳契数

斐波那契数列由如下递归关系定义:

F(n) = F(n-1)+ F(n-2), 且 F1 = 1 ,F2 = 1

因此数列的前12项为:

F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34
F10 = 55
F11 = 89
F12 = 144

第12项,即是第一个包含三个数字的项

求数列中第一个包含1000个数字的项

解法:

用第二题中的方法,生成斐波那契数列,之后判断。

打赏作者

文章目錄