欧拉工程-问题25
文章目錄
原题链接 http://projecteuler.net/problem=25
1000-digit Fibonacci number
The Fibonacci sequence is defined by the recurrence relation:
F(n) = F(n-1)+ F(n-2), where F1 = 1 and F2 = 1.
Hence the first 12 terms will be:
F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34
F10 = 55
F11 = 89
F12 = 144
The 12th term, F12, is the first term to contain three digits.
What is the first term in the Fibonacci sequence to contain 1000 digits?
1000个数字的斐波纳契数
斐波那契数列由如下递归关系定义:
F(n) = F(n-1)+ F(n-2), 且 F1 = 1 ,F2 = 1
因此数列的前12项为:
F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34
F10 = 55
F11 = 89
F12 = 144
第12项,即是第一个包含三个数字的项
求数列中第一个包含1000个数字的项
解法:
用第二题中的方法,生成斐波那契数列,之后判断。