欧拉工程-问题53
原题链接 http://projecteuler.net/problem=53
#
Combinatoric selections
There are exactly ten ways of selecting three from five, 12345:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
In combinatorics, we use the notation, C(5,3) = 10.
In general,
C(n,r)=n!/(r!(n-r)!), where r <= n, n! = n (n - 1) … 3 2 * 1,and 0! = 1.
It is not until n = 23, that a value exceeds one-million: C(23,10) = 1144066.
How many, not necessarily distinct, values of C(n,r), for 1 <= n <= 100, are greater than one-million?
组合选择
从五个,12345中选出三个一共有10中方法
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
在组合中我们使用记号C(5,3) = 10.
一般来说
C(n,r)=n!/(r!(n-r)!),r <= n, n! = n (n - 1) … 3 2 * 1, 且0! = 1
直到n = 23,才出现值超过1000000: C(23,10) = 1144066.
求一共有多少个值,没有必要是唯一的,使得C(n,r), 1 <=n<= 100,超过1000000?
解答:
遍历吧。